23 research outputs found

    Morphofunctional analysis of the feeding apparatus in four Pomacentridae species: <i>Dascyllus aruanus, Chromis retrofasciata, Chrysiptera biocellata</i> and <i>C. unimaculata</i>

    Get PDF
    Pomacentrids display a significant biodiversity through a variety of sympatric species with various feeding habits. The use of ecomorphological methods, based on the study of skeletal and muscular structures of the feeding apparatus could result in a better understanding of the adaptive radiation of this family. Significant differences in teeth and in the shape and thickened areas of the different bones were observed. The strongest structures occur in species which had teeth characteristic of suction feeding, and the weakest structures in species with biting teeth

    Bipartite life cycle of coral reef fishes promotes increasing shape disparity of the head skeleton during ontogeny: an example from damselfishes (Pomacentridae)

    Get PDF
    Background: Quantitative studies of the variation of disparity during ontogeny exhibited by the radiation of coral reef fishes are lacking. Such studies dealing with the variation of disparity, i.e. the diversity of organic form, over ontogeny could be a first step in detecting evolutionary mechanisms in these fishes. The damselfishes (Pomacentridae) have a bipartite life-cycle, as do the majority of demersal coral reef fishes. During their pelagic dispersion phase, all larvae feed on planktonic prey. On the other hand, juveniles and adults associated with the coral reef environment show a higher diversity of diets. Using geometric morphometrics, we study the ontogenetic dynamic of shape disparity of different head skeletal units (neurocranium, suspensorium and opercle, mandible and premaxilla) in this fish family. We expected that larvae of different species might be relatively similar in shapes. Alternatively, specialization may become notable even in the juvenile and adult phase. Results: The disparity levels increase significantly throughout ontogeny for each skeletal unit. At settlement, all larval shapes are already species-specific. Damselfishes show high levels of ontogenetic allometry during their postsettlement growth. The divergence of allometric patterns largely explains the changes in patterns and levels of shape disparity over ontogeny. The rate of shape change and the length of ontogenetic trajectories seem to be less variable among species. We also show that the high levels of shape disparity at the adult stage are correlated to a higher level of ecological and functional diversity in this stage. Conclusion: Diversification throughout ontogeny of damselfishes results from the interaction among several developmental novelties enhancing disparity. The bipartite life-cycle of damselfishes exemplifies a case where the variation of environmental factors, i.e. the transition from the more homogeneous oceanic environment to the coral reef offering a wide range of feeding habits, promotes increasing shape disparity of the head skeleton over the ontogeny of fishes

    Diversification of the pectoral fin shape in damselfishes (Perciformes, Pomacentridae) of the Eastern Pacific

    Full text link
    Fin shape strongly influences performance of locomotion across all swimming styles. In this study, we focused on the diversity of the pectoral fin morphology in damselfishes of the Eastern Pacific. Underwater observations and a review of literature allowed the characterization of ten behavioral groups. Territorial and non-territorial species were discriminated easily with traditional morphometrics. Five ecomorphological groups were recognized by geometric morphometric analyses. Geometric data segregated the outgroup from the damselfishes and allowed the distinction of mean morphologies from extreme ones within territorial and non-territorial species. Additionally, geometric morphometric data split Abudefduf into two groups: (1) A. troschelii is similar to C. atrilobata and (2) A. concolor and A. declivifrons are close to Stegastes. Solitary territorial species (e.g., Stegastes) show rounded and high fins whereas non-territorial species living in groups (e.g., Chromis) present long and curved pectoral fins. In the range of morphological variation, the morphologies of Microspathodon (elongate with highly curved hydrodynamic trailing edge) and Azurina (long, slender and angular) represent the extreme morphologies within territorial and non-territorial species, respectively. Our study revealed a strong relationship between the pectoral fin shape and the behavioral diversification in damselfishes.CONACYT/83339; SEMARNAT-CONACYT/02339

    Early development of the chondrocranium in Chrysichtys auratus (Pisces, Siluriformes, Claroteidae)

    Full text link
    The inception and development of the cartilaginous cephalis skeleton of Chrysichthys auratus is described from hatching to about 18 days post-hatching. At hatching, no skeletal structure is present. Not until day 3 do clearly delimited cranial primordia become apparent. As in many siluriforms, the neurocranium is platybasic from the start, the suspensorium constitutes, with Meckel’s cartilage and the hyoid bar, a single cartilaginous element, and the junction between the front and rear of the neurocranium is complete on day 4. By day 8 the quadratomandibular joint has formed and the tectum posterius has appeared. Cartilage reduction first affects the trabecular bars, then, markedly, the visceral arches. By day 18 the braincase floor has almost disappeared
    corecore